Skip to content

This guide covers deploying Strands agents using Terraform infrastructure as code. Terraform enables consistent, repeatable deployments across AWS, Google Cloud, Azure, and other cloud providers.

Terraform supports multiple deployment targets. This deploy example illustates four deploy options from different Cloud Service Providers:

Cloud deployment requires your containerized agent to be available in a container registry. The following assumes you have completed the Docker deployment guide and pushed your image to the appropriate registry:

Docker Tutorial Project Structure:

Project Structure (Python):

my-python-app/
├── agent.py # FastAPI application (from Docker tutorial)
├── Dockerfile # Container configuration (from Docker tutorial)
├── pyproject.toml # Created by uv init
├── uv.lock # Created automatically by uv

Project Structure (TypeScript):

my-typescript-app/
├── index.ts # Express application (from Docker tutorial)
├── Dockerfile # Container configuration (from Docker tutorial)
├── package.json # Created by npm init
├── tsconfig.json # TypeScript configuration
├── package-lock.json # Created automatically by npm

Deploy-specific Docker configurations

=== “AWS App Runner”

**Image Requirements:**
- Standard Docker images supported
**Container Registry Requirements:**
- Amazon Elastic Container Registry ([See documentation to push Docker image to ECR](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html))
**Docker Deployment Guide Modifications:**
- No special base image required (standard Docker images work)
- Ensure your app listens on port 8080 (or configure port in terraform)
- Build with: `docker build --platform linux/amd64 -t my-agent .`

=== “AWS Lambda”

**Image Requirements:**
- Must use Lambda-compatible base images:
- Python: `public.ecr.aws/lambda/python:3.11`
- TypeScript/Node.js: `public.ecr.aws/lambda/nodejs:20`
**Container Registry Requirements:**
- Amazon Elastic Container Registry ([See documentation to push Docker image to ECR](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html))
**Docker Deployment Guide Modifications:**
- Update Dockerfile base image to Lambda-compatible version
- Change CMD to Lambda handler format: `CMD ["index.handler"]` or `CMD ["app.lambda_handler"]`
- Build with Lambda flags: `docker build --platform linux/amd64 --provenance=false --sbom=false -t my-agent .`
- Add Lambda handler to your code:
- **Python FastAPI (Recommended):** Use [Mangum](https://mangum.io/): `lambda_handler = Mangum(app)`
- **Manual handlers:** Accept `(event, context)` parameters and return Lambda-compatible responses
**Lambda Handler Examples:**
Python with Mangum:
```python
from mangum import Mangum
from your_app import app # Your existing FastAPI app
lambda_handler = Mangum(app)
```
TypeScript:
```typescript
export const handler = async (event: any, context: any) => {
// Your existing agent logic here
return {
statusCode: 200,
body: JSON.stringify({ message: "Agent response" })
};
};
```
Python:
```python
def lambda_handler(event, context):
# Your existing agent logic here
return {
'statusCode': 200,
'body': json.dumps({'message': 'Agent response'})
}
```

=== “Google Cloud Run”

**Image Requirements:**
- Standard Docker images supported
**Container Registry Requirements:**
- Google Artifact Registry ([See documentation to push Docker image to GAR](https://cloud.google.com/container-registry/docs/pushing-and-pulling))
**Docker Deployment Guide Modifications:**
- No special base image required (standard Docker images work)
- Ensure your app listens on the port specified by `PORT` environment variable
- Build with: `docker build --platform linux/amd64 -t my-agent .`

=== “Azure Container Instances”

**Image Requirements:**
- Standard Docker images supported
**Container Registry Requirements:**
- Azure Container Registry ([See documentation to push Docker image to ACR](https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-docker-cli))
**Docker Deployment Guide Modifications:**
- No special base image required (standard Docker images work)
- Ensure your app exposes the correct port (typically 8080)
- Build with: `docker build --platform linux/amd64 -t my-agent .`

=== “AWS App Runner”

<details>
<summary>
<strong>Optional: Open AWS App Runner Setup All-in-One Bash Command</strong><br>
<sub>Copy and paste this bash script to create all necessary terraform files and skip remaining "Cloud Deployment Setup" steps below:</sub>
</summary>
```bash
generate_aws_apprunner_terraform() {
mkdir -p terraform
# Generate main.tf
cat > terraform/main.tf << 'EOF'
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
provider "aws" {
region = var.aws_region
}
resource "aws_iam_role" "apprunner_ecr_access_role" {
name = "apprunner-ecr-access-role"
assume_role_policy = jsonencode({
Version = "2012-10-17"
Statement = [
{
Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {
Service = "build.apprunner.amazonaws.com"
}
}
]
})
}
resource "aws_iam_role_policy_attachment" "apprunner_ecr_access_policy" {
role = aws_iam_role.apprunner_ecr_access_role.name
policy_arn = "arn:aws:iam::aws:policy/service-role/AWSAppRunnerServicePolicyForECRAccess"
}
resource "aws_apprunner_service" "agent" {
service_name = "strands-agent-v4"
source_configuration {
image_repository {
image_identifier = var.agent_image
image_configuration {
port = "8080"
runtime_environment_variables = {
OPENAI_API_KEY = var.openai_api_key
}
}
image_repository_type = "ECR"
}
auto_deployments_enabled = false
authentication_configuration {
access_role_arn = aws_iam_role.apprunner_ecr_access_role.arn
}
}
instance_configuration {
cpu = "0.25 vCPU"
memory = "0.5 GB"
}
}
EOF
# Generate variables.tf
cat > terraform/variables.tf << 'EOF'
variable "aws_region" {
description = "AWS region"
type = string
default = "us-east-1"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
EOF
# Generate outputs.tf
cat > terraform/outputs.tf << 'EOF'
output "agent_url" {
description = "AWS App Runner service URL"
value = aws_apprunner_service.agent.service_url
}
EOF
# Generate terraform.tfvars template
cat > terraform/terraform.tfvars << 'EOF'
agent_image = "your-account.dkr.ecr.us-east-1.amazonaws.com/my-image:latest"
openai_api_key = "<your-openai-api-key>"
EOF
echo "✅ AWS App Runner Terraform files generated in terraform/ directory"
}
generate_aws_apprunner_terraform
```
</details>
**Step by Step Guide**
Create terraform directory
```bash
mkdir terraform
cd terraform
```
Create `main.tf`
```hcl
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
provider "aws" {
region = var.aws_region
}
resource "aws_iam_role" "apprunner_ecr_access_role" {
name = "apprunner-ecr-access-role"
assume_role_policy = jsonencode({
Version = "2012-10-17"
Statement = [
{
Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {
Service = "build.apprunner.amazonaws.com"
}
}
]
})
}
resource "aws_iam_role_policy_attachment" "apprunner_ecr_access_policy" {
role = aws_iam_role.apprunner_ecr_access_role.name
policy_arn = "arn:aws:iam::aws:policy/service-role/AWSAppRunnerServicePolicyForECRAccess"
}
resource "aws_apprunner_service" "agent" {
service_name = "strands-agent-v4"
source_configuration {
image_repository {
image_identifier = var.agent_image
image_configuration {
port = "8080"
runtime_environment_variables = {
OPENAI_API_KEY = var.openai_api_key
}
}
image_repository_type = "ECR"
}
auto_deployments_enabled = false
authentication_configuration {
access_role_arn = aws_iam_role.apprunner_ecr_access_role.arn
}
}
instance_configuration {
cpu = "0.25 vCPU"
memory = "0.5 GB"
}
}
```
Create `variables.tf`
```hcl
variable "aws_region" {
description = "AWS region"
type = string
default = "us-east-1"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
```
Create `outputs.tf`
```hcl
output "agent_url" {
description = "AWS App Runner service URL"
value = aws_apprunner_service.agent.service_url
}
```

=== “AWS Lambda”

<details>
<summary>
<strong>Optional: Open AWS Lambda Setup All-in-One Bash Command</strong><br>
<sub>Copy and paste this bash script to create all necessary terraform files and skip remaining "Cloud Deployment Setup" steps below:</sub>
</summary>
```bash
generate_aws_lambda_terraform() {
mkdir -p terraform
# Generate main.tf
cat > terraform/main.tf << 'EOF'
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
provider "aws" {
region = var.aws_region
}
resource "aws_lambda_function" "agent" {
function_name = "strands-agent"
role = aws_iam_role.lambda.arn
image_uri = var.agent_image
package_type = "Image"
architectures = ["x86_64"]
timeout = 30
memory_size = 512
environment {
variables = {
OPENAI_API_KEY = var.openai_api_key
}
}
}
resource "aws_lambda_function_url" "agent" {
function_name = aws_lambda_function.agent.function_name
authorization_type = "NONE"
}
resource "aws_iam_role" "lambda" {
name = "strands-agent-lambda-role"
assume_role_policy = jsonencode({
Version = "2012-10-17"
Statement = [{
Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {
Service = "lambda.amazonaws.com"
}
}]
})
}
resource "aws_iam_role_policy_attachment" "lambda" {
role = aws_iam_role.lambda.name
policy_arn = "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
}
EOF
# Generate variables.tf
cat > terraform/variables.tf << 'EOF'
variable "aws_region" {
description = "AWS region"
type = string
default = "us-east-1"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
EOF
# Generate outputs.tf
cat > terraform/outputs.tf << 'EOF'
output "agent_url" {
description = "AWS Lambda function URL"
value = aws_lambda_function_url.agent.function_url
}
EOF
# Generate terraform.tfvars template
cat > terraform/terraform.tfvars << 'EOF'
agent_image = "your-account.dkr.ecr.us-east-1.amazonaws.com/my-image:latest"
openai_api_key = "<your-openai-api-key>"
EOF
echo "✅ AWS Lambda Terraform files generated in terraform/ directory"
}
generate_aws_lambda_terraform
```
</details>
**Step by Step Guide**
Create terraform directory
```bash
mkdir terraform
cd terraform
```
Create `main.tf`
```hcl
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
provider "aws" {
region = var.aws_region
}
resource "aws_lambda_function" "agent" {
function_name = "strands-agent"
role = aws_iam_role.lambda.arn
image_uri = var.agent_image
package_type = "Image"
architectures = ["x86_64"]
timeout = 30
memory_size = 512
environment {
variables = {
OPENAI_API_KEY = var.openai_api_key
}
}
}
resource "aws_lambda_function_url" "agent" {
function_name = aws_lambda_function.agent.function_name
authorization_type = "NONE"
}
resource "aws_iam_role" "lambda" {
name = "strands-agent-lambda-role"
assume_role_policy = jsonencode({
Version = "2012-10-17"
Statement = [{
Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {
Service = "lambda.amazonaws.com"
}
}]
})
}
resource "aws_iam_role_policy_attachment" "lambda" {
role = aws_iam_role.lambda.name
policy_arn = "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
}
```
Create `variables.tf`
```hcl
variable "aws_region" {
description = "AWS region"
type = string
default = "us-east-1"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
```
Create `outputs.tf`
```hcl
output "agent_url" {
description = "AWS Lambda function URL"
value = aws_lambda_function_url.agent.function_url
}
```

=== “Google Cloud Run”

<details>
<summary>
<strong>Optional: Open Google Cloud Run Setup All-in-One Bash Command</strong><br>
<sub>Copy and paste this bash script to create all necessary terraform files and skip remaining "Cloud Deployment Setup" steps below:</sub>
</summary>
```bash
generate_google_cloud_run_terraform() {
mkdir -p terraform
# Generate main.tf
cat > terraform/main.tf << 'EOF'
terraform {
required_providers {
google = {
source = "hashicorp/google"
version = "~> 4.0"
}
}
}
provider "google" {
project = var.gcp_project
region = var.gcp_region
}
resource "google_cloud_run_service" "agent" {
name = "strands-agent"
location = var.gcp_region
template {
spec {
containers {
image = var.agent_image
env {
name = "OPENAI_API_KEY"
value = var.openai_api_key
}
}
}
}
}
resource "google_cloud_run_service_iam_member" "public" {
service = google_cloud_run_service.agent.name
location = google_cloud_run_service.agent.location
role = "roles/run.invoker"
member = "allUsers"
}
EOF
# Generate variables.tf
cat > terraform/variables.tf << 'EOF'
variable "gcp_project" {
description = "GCP project ID"
type = string
}
variable "gcp_region" {
description = "GCP region"
type = string
default = "us-central1"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
EOF
# Generate outputs.tf
cat > terraform/outputs.tf << 'EOF'
output "agent_url" {
description = "Google Cloud Run service URL"
value = google_cloud_run_service.agent.status[0].url
}
EOF
# Generate terraform.tfvars template
cat > terraform/terraform.tfvars << 'EOF'
gcp_project = "<your-project-id>"
agent_image = "gcr.io/your-project/my-image:latest"
openai_api_key = "<your-openai-api-key>"
EOF
echo "✅ Google Cloud Run Terraform files generated in terraform/ directory"
}
generate_google_cloud_run_terraform
```
</details>
**Step by Step Guide**
Create terraform directory
```bash
mkdir terraform
cd terraform
```
Create `main.tf`
```hcl
terraform {
required_providers {
google = {
source = "hashicorp/google"
version = "~> 4.0"
}
}
}
provider "google" {
project = var.gcp_project
region = var.gcp_region
}
resource "google_cloud_run_service" "agent" {
name = "strands-agent"
location = var.gcp_region
template {
spec {
containers {
image = var.agent_image
env {
name = "OPENAI_API_KEY"
value = var.openai_api_key
}
env {
name = "GOOGLE_GENAI_USE_VERTEXAI"
value = "false"
}
env {
name = "GOOGLE_API_KEY"
value = var.google_api_key
}
}
}
}
}
resource "google_cloud_run_service_iam_member" "public" {
service = google_cloud_run_service.agent.name
location = google_cloud_run_service.agent.location
role = "roles/run.invoker"
member = "allUsers"
}
```
Create `variables.tf`
```hcl
variable "gcp_project" {
description = "GCP project ID"
type = string
}
variable "gcp_region" {
description = "GCP region"
type = string
default = "us-central1"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
variable "google_api_key" {
description = "Google API key"
type = string
sensitive = true
}
```
Create `outputs.tf`
```hcl
output "agent_url" {
description = "Google Cloud Run service URL"
value = google_cloud_run_service.agent.status[0].url
}
```

=== “Azure Container Instances”

<details>
<summary>
<strong>Optional: Open Azure Container Instances Setup All-in-One Bash Command</strong><br>
<sub>Copy and paste this bash script to create all necessary terraform files and skip remaining "Cloud Deployment Setup" steps below:</sub>
</summary>
```bash
generate_azure_container_instance_terraform() {
mkdir -p terraform
# Generate main.tf
cat > terraform/main.tf << 'EOF'
terraform {
required_providers {
azurerm = {
source = "hashicorp/azurerm"
version = "~> 3.0"
}
}
}
provider "azurerm" {
features {}
}
data "azurerm_container_registry" "acr" {
name = var.acr_name
resource_group_name = var.acr_resource_group
}
resource "azurerm_resource_group" "main" {
name = "strands-agent"
location = var.azure_location
}
resource "azurerm_container_group" "agent" {
name = "strands-agent"
location = azurerm_resource_group.main.location
resource_group_name = azurerm_resource_group.main.name
ip_address_type = "Public"
os_type = "Linux"
image_registry_credential {
server = "${var.acr_name}.azurecr.io"
username = var.acr_name
password = data.azurerm_container_registry.acr.admin_password
}
container {
name = "agent"
image = var.agent_image
cpu = "0.5"
memory = "1.5"
ports {
port = 8080
}
environment_variables = {
OPENAI_API_KEY = var.openai_api_key
}
}
}
EOF
# Generate variables.tf
cat > terraform/variables.tf << 'EOF'
variable "azure_location" {
description = "Azure location"
type = string
default = "East US"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
variable "acr_name" {
description = "Azure Container Registry name"
type = string
}
variable "acr_resource_group" {
description = "Azure Container Registry resource group"
type = string
}
EOF
# Generate outputs.tf
cat > terraform/outputs.tf << 'EOF'
output "agent_url" {
description = "Azure Container Instance URL"
value = "http://${azurerm_container_group.agent.ip_address}:8080"
}
EOF
# Generate terraform.tfvars template
cat > terraform/terraform.tfvars << 'EOF'
agent_image = "your-registry.azurecr.io/my-image:latest"
openai_api_key = "<your-openai-api-key>"
acr_name = "<your-acr-name>"
acr_resource_group = "<your-resource-group>"
EOF
echo "✅ Azure Container Instance Terraform files generated in terraform/ directory"
}
generate_azure_container_instance_terraform
```
</details>
**Step by Step Guide**
Create terraform directory
```bash
mkdir terraform
cd terraform
```
Create `main.tf`
```hcl
terraform {
required_providers {
azurerm = {
source = "hashicorp/azurerm"
version = "~> 3.0"
}
}
}
provider "azurerm" {
features {}
}
data "azurerm_container_registry" "acr" {
name = var.acr_name
resource_group_name = var.acr_resource_group
}
resource "azurerm_resource_group" "main" {
name = "strands-agent"
location = var.azure_location
}
resource "azurerm_container_group" "agent" {
name = "strands-agent"
location = azurerm_resource_group.main.location
resource_group_name = azurerm_resource_group.main.name
ip_address_type = "Public"
os_type = "Linux"
image_registry_credential {
server = "${var.acr_name}.azurecr.io"
username = var.acr_name
password = data.azurerm_container_registry.acr.admin_password
}
container {
name = "agent"
image = var.agent_image
cpu = "0.5"
memory = "1.5"
ports {
port = 8080
}
environment_variables = {
OPENAI_API_KEY = var.openai_api_key
}
}
}
```
Create `variables.tf`
```hcl
variable "azure_location" {
description = "Azure location"
type = string
default = "East US"
}
variable "agent_image" {
description = "Container image for Strands agent"
type = string
}
variable "openai_api_key" {
description = "OpenAI API key"
type = string
sensitive = true
}
variable "acr_name" {
description = "Azure Container Registry name"
type = string
}
variable "acr_resource_group" {
description = "Azure Container Registry resource group"
type = string
}
```
Create `output.tf`
```hcl
output "agent_url" {
description = "Azure Container Instance URL"
value = "http://${azurerm_container_group.agent.ip_address}:8080"
}
```

Update terraform/terraform.tfvars based on your chosen provider:

=== “AWS App Runner”

```hcl
agent_image = "your-account.dkr.ecr.us-east-1.amazonaws.com/my-image:latest"
openai_api_key = "<your-openai-api-key>"
```
This example uses OpenAI, but any supported model provider can be configured. See the [Strands documentation](https://strandsagents.com/latest/documentation/docs/user-guide/concepts/model-providers) for all supported model providers.
**Note:** Bedrock model provider credentials are automatically passed using App Runner's IAM role and do not need to be specified in Terraform.

=== “AWS Lambda”

```hcl
agent_image = "your-account.dkr.ecr.us-east-1.amazonaws.com/my-image:latest"
openai_api_key = "<your-openai-api-key>"
```
This example uses OpenAI, but any supported model provider can be configured. See the [Strands documentation](https://strandsagents.com/latest/documentation/docs/user-guide/concepts/model-providers) for all supported model providers.
**Note:** Bedrock model provider credentials are automatically passed using Lambda's IAM role and do not need to be specified in Terraform.

=== “Google Cloud Run”

```hcl
gcp_project = "your-project-id"
agent_image = "gcr.io/your-project/my-image:latest"
openai_api_key = "<your-openai-api-key>"
```
This example uses OpenAI, but any supported model provider can be configured. See the [Strands documentation](https://strandsagents.com/latest/documentation/docs/user-guide/concepts/model-providers) for all supported model providers. For instance, to use Bedrock model provider credentials:
```hcl
aws_access_key_id = "<your-aws-access-key-id>"
aws_secret_access_key = "<your-aws-secret-key>"
```

=== “Azure Container Instances”

```hcl
agent_image = "your-registry.azurecr.io/my-image:latest"
openai_api_key = "<your-openai-api-key>"
acr_name = "<your-registry>"
acr_resource_group = "<your-resource-group>"
```
This example uses OpenAI, but any supported model provider can be configured. See the [Strands documentation](https://strandsagents.com/latest/documentation/docs/user-guide/concepts/model-providers) for all supported model providers. For instance, to use Bedrock model provider credentials:
```hcl
aws_access_key_id = "<your-aws-access-key-id>"
aws_secret_access_key = "<your-aws-secret-key>"
```
Terminal window
# Initialize Terraform
terraform init
# Review the deployment plan
terraform plan
# Deploy the infrastructure
terraform apply
# Get the endpoints
terraform output

Test the endpoints using the output URLs:

Terminal window
# Health check
curl http://<your-service-url>/ping
# Test agent invocation
curl -X POST http://<your-service-url>/invocations \
-H "Content-Type: application/json" \
-d '{"input": {"prompt": "What is artificial intelligence?"}}'

When you modify your code, redeploy with:

Terminal window
# Rebuild and push image
docker build -t <your-registry>/my-image:latest .
docker push <your-registry>/my-image:latest
# Update infrastructure
terraform apply

Remove the infrastructure when done:

Terminal window
terraform destroy