Streaming Events
Section titled “Streaming Events”Strands Agents SDK provides real-time streaming capabilities that allow you to monitor and process events as they occur during agent execution. This enables responsive user interfaces, real-time monitoring, and custom output formatting.
Strands has multiple approaches for handling streaming events:
- Async Iterators: Ideal for asynchronous server frameworks
- Callback Handlers (Python only): Perfect for synchronous applications and custom event processing
Both methods receive the same event types but differ in their execution model and use cases.
Event Types
Section titled “Event Types”All streaming methods yield the same set of events:
Lifecycle Events
Section titled “Lifecycle Events”=== “Python”
- **`init_event_loop`**: True at the start of agent invocation initializing- **`start_event_loop`**: True when the event loop is starting- **`message`**: Present when a new message is created- **`event`**: Raw event from the model stream- **`force_stop`**: True if the event loop was forced to stop - **`force_stop_reason`**: Reason for forced stop- **`result`**: The final [`AgentResult`](../../../api-reference/python/agent/agent_result.md#strands.agent.agent_result.AgentResult)=== “TypeScript”
Each event emitted from the typescript agent is a class with a `type` attribute that has a unique value. When determining an event, you can use `instanceof` on the class, or an equality check on the `event.type` value.
- **`BeforeInvocationEvent`**: Start of agent loop (before any iterations)- **`AfterInvocationEvent`**: End of agent loop (after all iterations complete) - **`error?`**: Optional error if loop terminated due to exception- **`BeforeModelEvent`**: Before model invocation - **`messages`**: Array of messages being sent to model- **`AfterModelEvent`**: After model invocation - **`message`**: Assistant message returned by model - **`stopReason`**: Why generation stopped- **`BeforeToolsEvent`**: Before tools execution - **`message`**: Assistant message containing tool use blocks- **`AfterToolsEvent`**: After tools execution - **`message`**: User message containing tool resultsModel Stream Events
Section titled “Model Stream Events”=== “Python”
- **`data`**: Text chunk from the model's output- **`delta`**: Raw delta content from the model- **`reasoning`**: True for reasoning events - **`reasoningText`**: Text from reasoning process - **`reasoning_signature`**: Signature from reasoning process - **`redactedContent`**: Reasoning content redacted by the model=== “TypeScript”
- **`ModelMessageStartEvent`**: Start of a message from the model- **`ModelContentBlockStartEvent`**: Start of a content block from a model for text, toolUse, reasoning, etc.- **`ModelContentBlockDeltaEvent`**: Content deltas for text, tool input, or reasoning- **`ModelContentBlockStopEvent`**: End of a content block- **`ModelMessageStopEvent`**: End of a message- **`ModelMetadataEvent`**: Usage and metrics metadataTool Events
Section titled “Tool Events”=== “Python”
- current_tool_use: Information about the current tool being used, including:
- toolUseId: Unique ID for this tool use
- name: Name of the tool
- input: Tool input parameters (accumulated as streaming occurs)
- tool_stream_event: Information about an event streamed from a tool, including:
- tool_use: The ToolUse for the tool that streamed the event
- data: The data streamed from the tool
=== “TypeScript”
- BeforeToolsEvent: Information about the current tool being used, including:
- message: The assistant message containing tool use blocks
- ToolStreamEvent: Information about an event streamed from a tool, including:
- data: The data streamed from the tool
Multi-Agent Events
Section titled “Multi-Agent Events”=== “Python”
Multi-agent systems ([Graph](../multi-agent/graph.md) and [Swarm](../multi-agent/swarm.md)) emit additional coordination events:
- **`multiagent_node_start`**: When a node begins execution - **`type`**: `"multiagent_node_start"` - **`node_id`**: Unique identifier for the node - **`node_type`**: Type of node (`"agent"`, `"swarm"`, `"graph"`)- **`multiagent_node_stream`**: Forwarded events from agents/multi-agents with node context - **`type`**: `"multiagent_node_stream"` - **`node_id`**: Identifier of the node generating the event - **`event`**: The original agent event (nested)- **`multiagent_node_stop`**: When a node completes execution - **`type`**: `"multiagent_node_stop"` - **`node_id`**: Unique identifier for the node - **`node_result`**: Complete NodeResult with execution details, metrics, and status- **`multiagent_handoff`**: When control is handed off between agents (Swarm) or batch transitions (Graph) - **`type`**: `"multiagent_handoff"` - **`from_node_ids`**: List of node IDs completing execution - **`to_node_ids`**: List of node IDs beginning execution - **`message`**: Optional handoff message (typically used in Swarm)- **`multiagent_result`**: Final multi-agent result - **`type`**: `"multiagent_result"` - **`result`**: The final GraphResult or SwarmResult
See [Graph streaming](../multi-agent/graph.md#streaming-events) and [Swarm streaming](../multi-agent/swarm.md#streaming-events) for usage examples.=== “TypeScript”
```typescriptComing soon to Typescript!```Quick Examples
Section titled “Quick Examples”=== “Python”
Async Iterator Pattern
python async for event in agent.stream_async("Calculate 2+2"): if "data" in event: print(event["data"], end="")
**Callback Handler Pattern**```pythondef handle_events(**kwargs): if "data" in kwargs: print(kwargs["data"], end="")
agent = Agent(callback_handler=handle_events)agent("Calculate 2+2")```=== “TypeScript”
**Async Iterator Pattern**```typescriptconst agent = new Agent({ tools: [notebook] })
for await (const event of agent.stream('Calculate 2+2')) { if (event.type === 'modelContentBlockDeltaEvent' && event.delta.type === 'textDelta') { // Print out the model text delta event data process.stdout.write(event.delta.text) }}console.log("\nDone!")```Identifying Events Emitted from Agent
Section titled “Identifying Events Emitted from Agent”This example demonstrates how to identify event emitted from an agent:
=== “Python”
```pythonfrom strands import Agentfrom strands_tools import calculator
def process_event(event): """Shared event processor for both async iterators and callback handlers""" # Track event loop lifecycle if event.get("init_event_loop", False): print("🔄 Event loop initialized") elif event.get("start_event_loop", False): print("▶️ Event loop cycle starting") elif "message" in event: print(f"📬 New message created: {event['message']['role']}") elif "result" in event: print("✅ Agent completed with result") elif event.get("force_stop", False): print(f"🛑 Event loop force-stopped: {event.get('force_stop_reason', 'unknown reason')}")
# Track tool usage if "current_tool_use" in event and event["current_tool_use"].get("name"): tool_name = event["current_tool_use"]["name"] print(f"🔧 Using tool: {tool_name}")
# Show text snippets if "data" in event: data_snippet = event["data"][:20] + ("..." if len(event["data"]) > 20 else "") print(f"📟 Text: {data_snippet}")
agent = Agent(tools=[calculator], callback_handler=None)async for event in agent.stream_async("What is the capital of France and what is 42+7?"): process_event(event)
```=== “TypeScript”
```typescriptfunction processEvent(event: AgentStreamEvent): void { // Track agent loop lifecycle switch (event.type) { case 'beforeInvocationEvent': console.log('🔄 Agent loop initialized') break case 'beforeModelCallEvent': console.log('▶️ Agent loop cycle starting') break case 'afterModelCallEvent': console.log(`📬 New message created: ${event.stopData?.message.role}`) break case 'beforeToolsEvent': console.log("About to execute tool!") break case 'beforeToolsEvent': console.log("Finished execute tool!") break case 'afterInvocationEvent': console.log('✅ Agent loop completed') break }
// Track tool usage if (event.type === 'modelContentBlockStartEvent' && event.start?.type === 'toolUseStart') { console.log(`\n🔧 Using tool: ${event.start.name}`) }
// Show text snippets if (event.type === 'modelContentBlockDeltaEvent' && event.delta.type === 'textDelta') { process.stdout.write(event.delta.text) }}const responseGenerator = agent.stream( 'What is the capital of France and what is 42+7? Record in the notebook.')for await (const event of responseGenerator) { processEvent(event)}```Sub-Agent Streaming Example
Section titled “Sub-Agent Streaming Example”Utilizing both agents as a tool and tool streaming, this example shows how to stream events from sub-agents:
=== “Python”
```pythonfrom typing import AsyncIteratorfrom dataclasses import dataclassfrom strands import Agent, toolfrom strands_tools import calculator
@dataclassclass SubAgentResult: agent: Agent event: dict
@toolasync def math_agent(query: str) -> AsyncIterator: """Solve math problems using the calculator tool.""" agent = Agent( name="Math Expert", system_prompt="You are a math expert. Use the calculator tool for calculations.", callback_handler=None, tools=[calculator] )
result = None async for event in agent.stream_async(query): yield SubAgentResult(agent=agent, event=event) if "result" in event: result = event["result"]
yield str(result)
def process_sub_agent_events(event): """Shared processor for sub-agent streaming events""" tool_stream = event.get("tool_stream_event", {}).get("data")
if isinstance(tool_stream, SubAgentResult): current_tool = tool_stream.event.get("current_tool_use", {}) tool_name = current_tool.get("name")
if tool_name: print(f"Agent '{tool_stream.agent.name}' using tool '{tool_name}'")
# Also show regular text output if "data" in event: print(event["data"], end="")
# Using with async iteratorsorchestrator_async_iterator = Agent( system_prompt="Route math questions to the math_agent tool.", callback_handler=None, tools=[math_agent])
# With async-iteratorasync for event in orchestrator_async_iterator.stream_async("What is 3+3?"): process_sub_agent_events(event)
# With callback handlerdef handle_events(**kwargs): process_sub_agent_events(kwargs)
orchestrator_callback = Agent( system_prompt="Route math questions to the math_agent tool.", callback_handler=handle_events, tools=[math_agent])
orchestrator_callback("What is 3+3?")```=== “TypeScript”
```typescript// Create the math agentconst mathAgent = new Agent({ systemPrompt: 'You are a math expert. Answer a math problem in one sentence', printer: false,})
const calculator = tool({ name: 'mathAgent', description: 'Agent that calculates the answer to a math problem input.', inputSchema: z.object({input: z.string()}), callback: async function* (input): AsyncGenerator<string, string, unknown> { // Stream from the sub-agent const generator = mathAgent.stream(input.input) let result = await generator.next() while (!result.done) { // Process events from the sub-agent if (result.value.type === 'modelContentBlockDeltaEvent' && result.value.delta.type === 'textDelta') { yield result.value.delta.text } result = await generator.next() } return result.value.lastMessage.content[0]!.type === "textBlock" ? result.value.lastMessage.content[0]!.text : result.value.lastMessage.content[0]!.toString() }})
const agent = new Agent({tools: [calculator]})for await (const event of agent.stream("What is 2 * 3? Use your tool.")) { if (event.type === "toolStreamEvent") { console.log(`Tool Event: ${JSON.stringify(event.data)}`) }}console.log("\nDone!")```Next Steps
Section titled “Next Steps”- Learn about Async Iterators for asynchronous streaming
- Explore Callback Handlers for synchronous event processing
- See the Agent API Reference for complete method documentation